Title: | General Purpose Optimization in R using C++ |
---|---|
Description: | Perform general purpose optimization in R using C++. A unified wrapper interface is provided to call C functions of the five optimization algorithms ('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B' and 'SANN') underlying optim(). |
Authors: | Yi Pan [aut, cre] |
Maintainer: | Yi Pan <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.6 |
Built: | 2024-09-08 04:42:00 UTC |
Source: | https://github.com/ypan1988/roptim |
Minimize Rosenbrock function using BFGS.
example1_rosen_bfgs(print = TRUE)
example1_rosen_bfgs(print = TRUE)
print |
whether the results should be printed. |
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } grr <- function(x) { ## Gradient of 'fr' x1 <- x[1] x2 <- x[2] c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1), 200 * (x2 - x1 * x1)) } res <- optim(c(-1.2,1), fr, grr, method = "BFGS", control = list(trace=TRUE), hessian = TRUE) res ## corresponding C++ implementation: example1_rosen_bfgs()
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } grr <- function(x) { ## Gradient of 'fr' x1 <- x[1] x2 <- x[2] c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1), 200 * (x2 - x1 * x1)) } res <- optim(c(-1.2,1), fr, grr, method = "BFGS", control = list(trace=TRUE), hessian = TRUE) res ## corresponding C++ implementation: example1_rosen_bfgs()
Gradient/Hessian checks for the implemented C++ class of Rosenbrock function.
example1_rosen_grad_hess_check()
example1_rosen_grad_hess_check()
Minimize Rosenbrock function (with numerical gradient) using BFGS.
example1_rosen_nograd_bfgs()
example1_rosen_nograd_bfgs()
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } optim(c(-1.2,1), fr, NULL, method = "BFGS") ## corresponding C++ implementation: example1_rosen_nograd_bfgs()
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } optim(c(-1.2,1), fr, NULL, method = "BFGS") ## corresponding C++ implementation: example1_rosen_nograd_bfgs()
Minimize Rosenbrock function using other methods ("Nelder-Mead"/"CG"/ "L-BFGS-B"/"SANN").
example1_rosen_other_methods()
example1_rosen_other_methods()
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } grr <- function(x) { ## Gradient of 'fr' x1 <- x[1] x2 <- x[2] c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1), 200 * (x2 - x1 * x1)) } optim(c(-1.2,1), fr) ## These do not converge in the default number of steps optim(c(-1.2,1), fr, grr, method = "CG") optim(c(-1.2,1), fr, grr, method = "CG", control = list(type = 2)) optim(c(-1.2,1), fr, grr, method = "L-BFGS-B") optim(c(-1.2,1), fr, method = "SANN") ## corresponding C++ implementation: example1_rosen_other_methods()
fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } grr <- function(x) { ## Gradient of 'fr' x1 <- x[1] x2 <- x[2] c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1), 200 * (x2 - x1 * x1)) } optim(c(-1.2,1), fr) ## These do not converge in the default number of steps optim(c(-1.2,1), fr, grr, method = "CG") optim(c(-1.2,1), fr, grr, method = "CG", control = list(type = 2)) optim(c(-1.2,1), fr, grr, method = "L-BFGS-B") optim(c(-1.2,1), fr, method = "SANN") ## corresponding C++ implementation: example1_rosen_other_methods()
Solve Travelling Salesman Problem (TSP) using SANN.
example2_tsp_sann(distmat, x)
example2_tsp_sann(distmat, x)
distmat |
a distance matrix for storing all pair of locations. |
x |
initial route. |
## Combinatorial optimization: Traveling salesman problem library(stats) # normally loaded eurodistmat <- as.matrix(eurodist) distance <- function(sq) { # Target function sq2 <- embed(sq, 2) sum(eurodistmat[cbind(sq2[,2], sq2[,1])]) } genseq <- function(sq) { # Generate new candidate sequence idx <- seq(2, NROW(eurodistmat)-1) changepoints <- sample(idx, size = 2, replace = FALSE) tmp <- sq[changepoints[1]] sq[changepoints[1]] <- sq[changepoints[2]] sq[changepoints[2]] <- tmp sq } sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic distance(sq) # rotate for conventional orientation loc <- -cmdscale(eurodist, add = TRUE)$points x <- loc[,1]; y <- loc[,2] s <- seq_len(nrow(eurodistmat)) tspinit <- loc[sq,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = "initial solution of traveling salesman problem", axes = FALSE) arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2], angle = 10, col = "green") text(x, y, labels(eurodist), cex = 0.8) ## The original R optimization: ## set.seed(123) # chosen to get a good soln relatively quickly ## res <- optim(sq, distance, genseq, method = "SANN", ## control = list(maxit = 30000, temp = 2000, trace = TRUE, ## REPORT = 500)) ## res # Near optimum distance around 12842 ## corresponding C++ implementation: set.seed(4) # chosen to get a good soln relatively quickly res <- example2_tsp_sann(eurodistmat, sq) tspres <- loc[res$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = "optim() 'solving' traveling salesman problem", axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8)
## Combinatorial optimization: Traveling salesman problem library(stats) # normally loaded eurodistmat <- as.matrix(eurodist) distance <- function(sq) { # Target function sq2 <- embed(sq, 2) sum(eurodistmat[cbind(sq2[,2], sq2[,1])]) } genseq <- function(sq) { # Generate new candidate sequence idx <- seq(2, NROW(eurodistmat)-1) changepoints <- sample(idx, size = 2, replace = FALSE) tmp <- sq[changepoints[1]] sq[changepoints[1]] <- sq[changepoints[2]] sq[changepoints[2]] <- tmp sq } sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic distance(sq) # rotate for conventional orientation loc <- -cmdscale(eurodist, add = TRUE)$points x <- loc[,1]; y <- loc[,2] s <- seq_len(nrow(eurodistmat)) tspinit <- loc[sq,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = "initial solution of traveling salesman problem", axes = FALSE) arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2], angle = 10, col = "green") text(x, y, labels(eurodist), cex = 0.8) ## The original R optimization: ## set.seed(123) # chosen to get a good soln relatively quickly ## res <- optim(sq, distance, genseq, method = "SANN", ## control = list(maxit = 30000, temp = 2000, trace = TRUE, ## REPORT = 500)) ## res # Near optimum distance around 12842 ## corresponding C++ implementation: set.seed(4) # chosen to get a good soln relatively quickly res <- example2_tsp_sann(eurodistmat, sq) tspres <- loc[res$par,] plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", main = "optim() 'solving' traveling salesman problem", axes = FALSE) arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2], angle = 10, col = "red") text(x, y, labels(eurodist), cex = 0.8)
Minimize a function using L-BFGS-B with 25-dimensional box constrained.
example3_flb_25_dims_box_con()
example3_flb_25_dims_box_con()
flb <- function(x) { p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained optim(rep(3, 25), flb, NULL, method = "L-BFGS-B", lower = rep(2, 25), upper = rep(4, 25)) # par[24] is *not* at boundary ## corresponding C++ implementation: example3_flb_25_dims_box_con()
flb <- function(x) { p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } ## 25-dimensional box constrained optim(rep(3, 25), flb, NULL, method = "L-BFGS-B", lower = rep(2, 25), upper = rep(4, 25)) # par[24] is *not* at boundary ## corresponding C++ implementation: example3_flb_25_dims_box_con()
Minimize a "wild" function using SANN and BFGS.
example4_wild_fun()
example4_wild_fun()
## "wild" function , global minimum at about -15.81515 fw <- function (x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 plot(fw, -50, 50, n = 1000, main = "optim() minimising 'wild function'") res <- optim(50, fw, method = "SANN", control = list(maxit = 20000, temp = 20, parscale = 20)) res ## Now improve locally {typically only by a small bit}: (r2 <- optim(res$par, fw, method = "BFGS")) points(r2$par, r2$value, pch = 8, col = "red", cex = 2) ## corresponding C++ implementation: example4_wild_fun()
## "wild" function , global minimum at about -15.81515 fw <- function (x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80 plot(fw, -50, 50, n = 1000, main = "optim() minimising 'wild function'") res <- optim(50, fw, method = "SANN", control = list(maxit = 20000, temp = 20, parscale = 20)) res ## Now improve locally {typically only by a small bit}: (r2 <- optim(res$par, fw, method = "BFGS")) points(r2$par, r2$value, pch = 8, col = "red", cex = 2) ## corresponding C++ implementation: example4_wild_fun()
Perform general purpose optimization in R using C++. A unified wrapper interface is provided to call C functions of the five optimization algorithms ('Nelder-Mead', 'BFGS', 'CG', 'L-BFGS-B' and 'SANN') underlying optim().
Yi Pan